APLIKASI MICROSOFT MATHEMATICS UNTUK PEMBELAJARAN EKONOMI
Yuhka Sundaya
Departemen Ekonomi Pembangunan Universitas Islam Bandung
Prolog
Pembelajar ekonomi bergerak dari memahami teori-teori ekonomi dalam rangka memahami ilmu ekonomi. Para pembelajar ekonomi telah mengetahui obyek-obyek ekonomi. Misalnya pasar, toko, warung, koperasi, harga, pengangguran, keluarga kaya, keluarga miskin dan lain-lain. Tapi itu adalah ‘pengetahuan’. Mengenai bagaimana pasar bisa mengubah harga? bagaimana pasar bisa memperbanyak keluarga kaya? para pembelajar memerlukan ilmu, karena melibatkan aktivitas berpikir yang boleh dibilang khusus dan mengikuti disiplin budaya akademik. Semakin rumit hubungan antar obyek ekonomi yang dikaji, semakin besar juga kebutuhan terhadap ilmu yang perlu dipahaminya.
Teori, jika kita pahami dari Henderson dan Quandt (1958), maaf 'ya' saya pakai buku jadul dulu, karena ada orang yang bilang bahwa kita harus pakai buku terbaru, karena buku lama sudah tidak update. ‘Iya, bener sih’, tapi bukankah buku yang baru itu adalah hasil serial studies dengan mengacu pada buku-buku jadul juga? Dari sanalah para penulis terinspirasi untuk menangkap novelty dan melakukan pembaharuan. Ketika kita memahami buku jadul, maka akan mudah memahami updatingnya pada buku-buku baru, bahkan bisa mengkritisi rantai logika yang diskrit atau yang terpatahnya, dan selanjutnya kita akan memeroleh inspirasi untuk memroduksi konten yang sama : novelty dan pembaharuan. Saya kira cukup 'ya' klarifikasinya 'he he'. “Teori adalah bagian ‘alat’ untuk menjelaskan dan memrediksi. Bagian alat lainnya adalah penyelidikan empiris (empirical investigations). Dua alat tersebut saling melengkapi. Teori menyajikan petunjuk untuk melakukan penyelidikan empiris, dan penyelidikan empiris menyajikan pembuktian terhadap asumsi dan simpulan teoritis”, demikian menurut Henderson dan Quandt (1958). Mereka melanjutkan bahwa teori itu terdiri dari tiga elemen, yaitu data, variabel dan asumsi perilaku. Data menampilkan peran parameter, variabel menampilkan besaran yang akan ditentukan, dan asumsi perilaku atau disebut postulat menampilkan himpunan operasi agar nilai variabelnya dapat ditentukan. Mankiw (2018) menggunakan istilah teori dan observasi. “Untuk menguji pernyataan teoritis, ekonom mengumpulkan dan menganalisis jenis dan jumlah variabel serta data yang dijelaskan dalam suatu teori. Jika tidak ditemukan hubungan pada variabel dan data tersebut, ekonom meragukan validitas teorinya. Jika observasi menampilkan hubungan yang kuat antara variabel dan data tersebut, maka ekonom akan memercayai teori tersebut”, demikian jia digeneralisasi dari Mankiw (2018). Para pembelajar ekonomi menggunakan asumsi untuk menyederhanakan dunia atau fenomena riil atau aktual yang rumit agar mudah untuk dipahami.
Oleh karena itu, ketika para pembelajar ekonomi memelajari suatu teori, maka mereka akan memahami data, variabel dan postulatnya. Pembelajaran demikian menjadi ritual dan terapi untuk menguatkan logika ekonomi, menghasilkan kekuatan inutitif yang sedang disestablish atau diinstall ke dalam pikiran para pembelajar ekonomi. Bahasa matematik dan statistic menjadi melekat atau tidak bisa dipisahkan dari proses pembelajaran. Disinilah kesulitan yang sering diperoleh para pembelajar ekonomi. Setidaknya yang pernah saya alami ‘teh’ demikian.
Namun sekarang, saya kira ‘mah’ kesulitan itu bisa diatasi. Ada software yang telah saya gunakan sejak Tahun 2010, namanya Microsoft Mathematics (MM). Dibuat oleh microsfot. Jadi, ceritanya, dulu saya sedang menyusun tesis di Bogor, ‘nah’ ketika menyusun kerangka pemikiran, saya menggunakan atau meminjam bahasa matematik agar dapat mengabstraksi obyek yang sedang dikaji. Mengabstraksi ‘teh’ dengan kata lain mengonversi dunia nyata ke dalam dunia analog, sehingga saya tidak usah ngotak-ngatik dunia nyata, melainkan ngotak-ngatik dunia analog agar saya memeroleh hipotesis yang perlu diuji via data empirisnya nanti. Software itu, yang fungsinya hampir sama dengan Maple, membantu melakukan beberapa operasi kalkulus, semacam differensiasi, integral dan solusi sistem persamaan. Bahkan ketika menyusun serial studies dari artikel-artikel ilmiah terpilih, mereka menggunakan bahasa matematika. Saya ‘kan’ harus tracing atau menelusuri juga bahasa metematika yang mereka gunakan, sehingga saya bisa memahami apa yang mereka sampaikan, baik dalam ekspresi teoritis maupun ekspresi hasil pengujian. Dua pekerjaan tersebut, ‘alhamdulillah’, terbantu oleh software MM. Kontribusi penting dari software ini membantu mencari pemecahan masalah matematik sekaligus menampilkan prosesnya yang dapat dipahami.
Melalui tulisan ini, Saya coba berbagi pengalaman bagaimana menggunakannya. Tentu bukan tutorial software MMnya secara utuh, melainkan contoh aplikasi pada pembelajaran ekonomi. Saya menggunakan dua contoh, yang mudah-mudahan temen-temen yang memerlukannya bisa terbantu. Setidaknya, point Saya adalah memeroleh familiarisasinya dari penggunaan software MM tersebut untuk keperluan pembelajaran teori. Saya menggunakan contoh pembelajaran teori optimisasi dengan kendala pada sebagai awalan, dan teori general market equilibrium pada bagian berikutnya. Pada bagian pertama, ‘temen-temen’ diharapkan familiar dengan operasi kalkulus differensiasi, sedangkan pada bagian kedua akan familiar dengan kalkulus sistem persamaan. Namun sebelum latihan itu, ada baiknya Saya awali dulu dengan fitur software MM secukup yang Saya perkirakan.
‘Oh iya’, dalam menulis dokumen ini, Saya sedang suka menggunakan gaya bertutur. Saya berusaha menempatkan pembaca sebagai mitra dialog virtual ketika sedang menulis. Tidak intens dengan budaya bahasa akademik yang biasa digunakan pada jurnal-jurnal ilmiah. Saya membuat tulisan ini bukan untuk sebuah temuan yang harus Saya komunikasikan dengan para ahli ekonomi yang telah advance, melainkan saya tujukan bagi temen-temen yang mau belajar teori ekonomi secara ‘serius’ dengan alat bantu software MM ini. Tapi kalau mau dikritik bahwa gaya bahasanya ‘ngga kampus banget’, ‘ya ngga apa-apa juga’ sih, toh sudah Saya sadari demikian. Saya seringkali menggunakan tanda petik ‘..’ untuk menampilkan kata atau frase khusus atau bahkan yang tidak memenuhi standar akademis digunakan.
Fitur Microsoft Mathematics
Software MM dapat didownload pada URL berikut:
https://microsoft-mathematics.en.uptodown.com/windows/download
Software tersebut tidak berlisensi dan aman untuk laptop atau personal computer. Sebagaimana ditampilkan:
Diinformasikan, lisensinya bebas, menggunakan operating systems Windows, diproduksi oleh Microsoft, bahasa menunya Inggris, ukuran file 18.89 megabyte, dan yang terbaru dipublish tanggal 23 januari 2020.
Setelah disimpan pada folder yang Anda gunakan, double klik filenya, dan ikuti instruksinya secara berurutan, pengalaman saya kurang dari 2 atau 3 menit saja, tergantung kondisi PC yang Anda gunakan. Installnya ‘ngga’ ribet, dan menurut Saya sangat ‘user friendly’.
Berikut tampilan awal MM:
Saya langsung saja ke menu yang akan digunakan untuk bekerja secara umum. Pada sisi kiri ada gambar seperti remote berwarna hijau. Di dalamnya ada menu:
1. Complex number
2. Calculus
3. Statistics
4. Trigonometry
5. Linear algebra
6. Standard
Keterangan lebih detil dapat kita buka pada menu ‘Microsoft Mathematics Help’ (File --> Help). Disana dijelaskan, MM menyediakan alat-alat matematik yang membantu proses pembelajaran lebih cepat dan mudah. MM dapat menyajikan pemecahan masalah matematik dilengkapi dengan tahapan mencapai solusinya. So, kita ‘bener-bener’ dapat mempelajari kenapa solusinya begini dan begitu. Kita dapat memahami konsep dasarnya seperti pra-aljabar, aljabar, trigonometri, fisika, kimia dan kalkulus. MM juga memiliki kalkulatir grafis yang didesain mirip kalkulator tangan. Alat tambahan matematiknya dapat membantu kita untuk mengevaluasi atau memelajari segitiga, konversi dari satu sistem unit ke sistem unit yang lain, dan memecahkan masalah sistem persamaan.
Menu yang digunakan sebagai latihan pada tulisan ini adalah ‘calculus’ dan ‘aljabar linear’. ‘Calculus’ digunakan untuk mencari solusi dari masalah optimisasi terkendala, dan ‘aljabar linear’ digunakan untuk mencari solusi atau menganalisis masalah general market equilibrium.
Sofwtare MM telah diperluas kemudahannya. Ia bisa masuk pada menu 'Add in' Microsoft Word dan OneNote. Disana kita bisa langsung menggunakannya tanpa harus membuka program terpisah. Hanya saja di Microsoft Word proses step by step solutionnya tidak ditampilkan, tapi di OneNote proses tersebut bisa ditampilkan. Bahkan, saat ini, 'temen-temen ngga usah' install di laptop atau PC juga bisa, karena sudah tampil operasinya secara online pada URL berikut :
Optimisasi dengan Kendala: Contoh 1
Contoh pembelajaran 1 Saya ambil dari Bab 12 Dasar Metode Matematika Ekonomi Chiang dan Wainwright (2005) halaman 347. Contoh ini menampilkan pengalaman aplikasi metode matematika differensiasi pada ‘masalah ekonomi optimasi’. Pada bagian awal, Chiang dan Wainwright (2005) menjelaskan teknik analisis yang akan diperoleh pada Bab 12. Pada alinea pertama ia menjelaskan sebuah postulat bahwa pilihan ekonomi tidak bersifat independent. Suatu pilihan akan membatasi pilihan yang lain. Setiap pilihan, satu sama lain saling membatasi. Contohnya adalah kuota produksi. Ia menyontohkan perusahaan yang memiliki 2 jenis output, misalnya Q1 dan Q2, dan perusahaan itu memiliki batas produksi, contohnya 950 unit, maka ekpresi matematisnya adalah Q1 + Q2 = 950 unit. Ketika perusahaan memperbesar produksi Q1, konsekuensinya akan menurunkan jumlah produksi Q2. Masalah ini, dalam istilah matematika, disebut dengan ‘optimum terkendala’. Bab 12 ini akan memberikan pemahaman mengenai titik ekstrim terkendala ‘relatif’ dan ‘absolut’.
Chiang dan Wainwright (2005) memulai pembahasan dengan ‘pengaruh kendala’. Ia menampilkan contoh indeks kegunaan konsumen (utility):
Ia kemudian menjelaskan bahwa ‘marginal utility’nya positif untuk setiap besaran x1 dan x2.
Ia hanya memberikan petunjuk bahwa marjinal utility adalah U1 @ ¶U/¶x1 dan U2 @ ¶U/¶x2.Tapi bagaimana kita memahami bahwa sifatnya positif ? Nah, mari kita gunakan software MM:
1. Copy term sebelah kanan tanda ‘sama dengan (=)’ pada persamaan (1), kemudian paste di MM:
3. Amati pada bari di bawah ‘output’, software MM melayani kita dengan pilihan operasi, apakah akan difaktorkan ekpresinya? didifferensiasi ke variabel x1? didifferensiasi ke variabel x1 ? ataukah akan diintegralkan.
4. Pilih ‘differensiate on x_1’ untuk mencari tahu maksud notasi U1 atau ¶U/x1 atau marginal utility x1 ketika kita membaca Chiang tadi, hasilnya adalah:
5. Hasilnya ditampilkan pada menu output yaitu x2 + 2. Hasil itu menunjukkan variabel x2 bersifat positif, dan konstantanya ‘2’ juga demikian.
6. Selanjutnya, pilih ‘differensiate on x_2’ pada menu baris 1, sehingga secara keseluruhan akan tampil:
7. Hasilnya adalah x1 yang bersifat positif. Jika hasilnya -x1, maka kita menerima informasi bahwa sifat variabel tersebut adalah negatif.
8. Terjawablah arti dari ‘positif’ dari teks Chiang dan Wainwright (2005) tadi.
Berikutnya, Chiang dan Wainwright (2005) menjelaskan bahwa U atau utility konsumen tersebut dimaksimisasi (diperoleh nilai terbesar atau tertingginya) tanpa kendala. Terbesit pemahaman bahwa konsumen akan membeli x1 dan x2 dengan jumlah yang tak terbatas (infinite). “Ini adalah solusi yang sesunggunya menampilkan sedikit praktik yang relevan, atau bisa disebut tidak relevan” tutur Chiang dan Wainwright (2005). Oleh karena itu untuk menampilkan masalah optimisasi yang bermakna, maka daya beli konsumen haru juga dipertimbangkan (also be taken into account). Kendala anggaran atau budget constraint harus menjadi pertimbangan agar masalah optimisasinya bermakna. Selanjutnya Chiang dan Wainwright (2005) menyontohkan dengan ‘konsumen yang cenderung mengeluarkan’ $60 pada barang x1 dan x2 yang masing-masing harganya adalah P1 = 4 dan P1 = 2, maka ekspresi persamaan kendala anggarannya adalah :
Contoh tersebut menampilkan ciri cara kerja optimisasi terkendala (constrained optimum), dimana pengambilan keputusan konsumen untuk memilih x1 dan x2 bersifat saling tergantung atau mutually dependent.
Metode Lagrange-Multiplier seringkali digunakan untuk menganalisis optimisasi terkendala pada masalah konsumen. Chiang dan Wainwright (2005) menampilkan cara analisisnya pada halaman 350. Ia menjelaskan bahwa metode Lagrange-Multipler atau pengganda Lagrange, dasarnya adalah mengonversi kendala ke dalam bentuk yang dapat diselesaikan atau dicari solusinya dengan operasi matematik yang disebut dengan first-order condition atau ‘kondisi turunan pertama’. Software MM dapat membantu pembelajar untuk memahami operasi tersebut.
Oke, kita langsung pelajari Lagrange-Multiplier tersebut. Persamaan (1) menjadi tujuan, dan persamaan (2) menjadi kendala, sehingga ekspresi Lagrangenya adalah:
Perhatikan kotak kedua sebelah kanan ! Aga berbeda tampilannya dengan persamaan (2). Term pada sisi kiri sama dengan pindah posisi ke kanan menjadi pengurang anggaran konsumen sebesar $60. Logika kita bisa saja memahami bahwa hasilnya sama dengan nol. Persamaan pada kotak tersebut dikali dengan symbol ‘l’ atau ‘lambda’ yang menampilkan sebuah ‘angka yang belum ditentukan’, dan inilah yang disebut dengan pengganda Lagrange. Bagaimana memahami ini? Tulis Chiang dan Wainwright (2005) “jika kita, entah gimana caranya, yakin bahwa 4x1 + 2x2= 60, maka akibat logisnya, term pada kotak sebelah kanan akan sama dengan ‘0’, dan akan menghilang, karena 0*l= 0. Oleh karena itu nilai Z akan sama dengan U atau term pada kotak sebelah kiri, dan artinya pencarian solusi optimisasi terkendala menjadi tidak bermakna, karena kembali pada cara kerja optimisasi tanpa kendala, dimana konsumen akan menentukan jumlah x1 dan x2 dengan cara tidak terbatas (infinite)”. Itulah kenapa Chiang dan Wainwright (2005) menyebut $60 dengan pengandaian ‘jika konsumen memiliki niat mengeluarkan sejumlah uang …” dalam rangka memberikan peluang bagi kita untuk mengeksplorasi asumsinya agar mendekati sifat yang realistis. Pada contoh ini diartikan bahwa perlu tambahan variabel (extra variabel) yang dalam dunia konsumen riilnya ditampilkan oleh pertimbangan lain konsumen yang tidak terdefinisi dalam masalah optimisasi yang sedang dicari solusinya. Symbol ‘l’ digunakan sebagai ‘taktik’ untuk mempertahankan agar problem optimasinya menimbang kendala anggaran. Konsekuensi dari argumentasi ini adalah ada tiga keputusan yang menjadi obyek pilihan konsumen, yaitu x1, x2, dan l.
Jika alasan sifat optimisasi terkendala dibalik persamaan (3) telah dipahami, maka tahapan berikutnya adalah menggali analisis marjinal. Di dalam mikroekonomi, keluar sejenak dari Chiang dan Wainwright (2005), disebut dengan equimajinal principle. Di dalam bahasa matematika ekonomi, Chiang dan Wainwright (2005) menyebutnya dengan kondisi turunan atau first-order condition untuk mencari titik ekstrim. Hasil dari turunan pertamanya disajikan pada persamaan (4):
Nah, bagaimana operasi turunan pertama menghasilkan solusi tersebut? Mari kita gunakan MM untuk membantu kita.
1. Jika pada software MM masih ada sisa kerja yang tadi, maka kita tekan ‘delete entry’:
2. Copy sisi kanan persamaan (3), kemudian paste di menu ‘worksheet’ MM kemudian tekan ‘enter’, sehingga tampil sebagai berikut :
3. Untuk menghasilkan turunan pertama pada persamaan (4a), klik ‘differensiate on l’ :
4. Untuk menghasilkan turunan pertama persamaan (4b) dan (4c), klik ‘differensiate on_x1’ dan ‘differensiate on_x2’ secara berurutan :
Apa arti dari turunan perama tersebut? “Persamaan (4a) akan menjamin terpenuhinya kendala secara otomatis. Kemudian dengan memasukan kendala ke dalam fungsi Lagrange dan memperlakukan Lagrange sebagai pengganda sebuah variabel ekstra (l), kita akan memeroleh titik ekstrim U (persamaan (1)) terkendala dengan cara menyaring (screening) nilai Z, yang diambil sebagai fungsi bebas tiga variabel (l, x1, dan x2)”, tutur Chiang dan Wainwright (2005). Untuk memahami makna ungkapan ‘titik ekstrim’, kita perlu membuka bagian awal Bab 11 dan 12 Chiang dan Wainwright (2005) yang menjelaskan masalah dasar optimisasi pilihan dengan ilustrasi. Intinya adalah untuk menguji solusi numerik dari masalah ‘optimisasi tanpa dan dengan kendala’. Untuk menjawab apakah U konsumen ‘yang kita pelajari’ itu berada pada titik maksimum absolut ataukan relatif.
Lantas berapa solusi numerik variabel x1, dan x2 yang sedang kita pahami ini ? Jawaban yang diberikan Chiang dan Wainwright (2005) l* = 4, x1* = 8, dan x2* = 14. Bagaimana kita memahami jawaban tersebut ?
1. Pada software MM yang sudah ada operasi turunan pertamanya, kita klik dulu menu ‘Equation Solver’, sehingga akan tampil apa yang disebut sheet ‘equation solver’ sebelah kanan, dan kita pilih ‘solve a system of 3 equation’ karena ada tiga persamaan turunan pertama yang sedang kita pelajari :
2. Kemudian kita klik output dari hasil ‘differensiate on_l’ yaitu , kemudian klik kanan mouse kita, sehingga muncul pilihan klik ‘copy’ dan paste pada sheet ‘equation 1’:
Pada setiap ‘equation’ kita tulis dulu ‘= 0’ pada sisi kanan setiap persamaannya.
4. Klik menu ‘solve’, dan kita akan memeroleh :
5. Solusi numerik MM pada tampilan point 4 sama persis dengan solusi yang diberikan Chiang dan Wainwright (2005).
6. Solusi MM memberikan informasi bahwa konsumen akan mencapai utility maksimum dengan mengonsumsi x1* sebanyak 14 unit dan x2* sebanyak 8 unit.
General Market Equilibrium : Contoh 2
Contoh kedua Saya ambil dari Chiang dan Wainwright (2005), Sub Bab 3.4 halaman 40. Contoh ini menampilkan pengalaman teknik sistem persamaan yang diaplikasikan pada isu pasar komoditi. Pengalaman ini dapat digunakan untuk mengambil hipotesis dari kerangka pemikiran yang menjelaskan interaksi antar pasar komoditi. Variabel penting yang akan kita kaji adalah keseimbangan harga komoditi dan permintaan serta penawarannya. Kita akan memelajarinya dari contoh yang sederhana, yaitu pasar dua komoditi dan 'temen-temen' bisa melakukan generalisasi pada ‘n’ atau ‘sekian’ pasar komoditi.
Sebagai awal pembelajaran, Chiang dan Wainwright (2005) memberikan contoh sederhana. Terdapat dua komoditi dan diasumsikan fungsi permintaan dan penawarannya bersifat linear. Jadi, menganggap bahwa kedua fungsi tersebut bersifat linear. Ekpresinya dalam bentuk simbolis atau ‘parametrik’ disajikan pada persamaan (5):
Dimana, a dan b adalah koefisien fungsi permintaan dan penawaran komoditi ‘1’, dan a dan b adalah koefisien fungsi permintaan dan penawaran komoditi ‘2’. Chiang dan Wainwright (2005) tidak menggunakan asumsi khusus mengenai tanda dari koefisien tersebut. Jadi, hubungan antara harga dengan permintaan dan penawaran tidak dispesifikasikan apakah menampilkan relasi yang negative atau positif.
Tahap pertama untuk mencari solusi model pasar dua komoditi tersebut dilakukan dengan teknik eliminasi variabel. Caranya, pertama masukan atau subsitusi persamaan (5b) dan (5c) ke dalam persamaan (5a), yaitu pasar komoditi ‘1’. Kedua, dengan cara yang sama, substitusikan persamaan (5e) dan (5f) ke dalam persamaan (5d), yaitu pasar komoditi ‘2’.
1. Substitusi Persamaan (5b) dan (5c) ke persamaan (5a) secara manual, dilanjutkan dengan substitusi persamaan (5e) dan (5f) ke dalam persamaan (5d) :
2. Menata parameter konstan dan variabel P1 dan P2:
3. Menyederhanakan parameter :
4. Buka software MM, kemudian klik ‘equation solver’, dan pilih ‘solve a system of 2 equation’:
5. Copy ‘c0 + c1P1 + c2P2’ pada tahap 3, kemudian paste pada menu ‘equation 1’. Lanjut copy ‘g0 + g1P1 + g2P2’ kemudian paste pada ‘equation 2’, dan klik menu ‘solve’ pada pojok kana bawah menu ‘Equation Solver’:
Software MM memberikan catatan matematis yang lengkap. Amati, bahwa supaya harga komoditi ‘1’ atau P1 masuk akal, maka c1 tidak boleh sama dengan 0 atau c1 ¹ 0, dan g2 – (c2g1/c1) ¹ 0.
6. Amati, bahwa software MM menampilkan tahapan untuk menghasilkan solusi tersebut. Kita dapat memelajari bagaimana ‘solution steps using substitution’, ‘solution steps using matrices’, dan ‘solution steps using elimination’. Jika kita buka ‘solution steps using matrices’, maka software MM akan tahapannya agar dapat kita pelajari secara bertahap proses yang menghasilkan solusi pada point 5:
Teknik matematika yang telah dibantu MM menghasilkan solusi harga komoditi ‘1’ dan ‘2’ yang equilibrium. Tentu solusinya bersifat parametrik konsisten dengan desain masalah yang dibahas dari awal.
Solusi persamaan (7) dapat digunakan untuk menampilkan hipotesis terkait faktor-faktor yang dapat mengubah P1 dan P1. Parameter ‘g’ ada pada solusi P1, yang menunjukkan bahwa pasar komoditi ‘2’ juga memengaruhi harga komoditi ‘1’, begitupun sebaliknya. Mengenai berapa besar pengaruhnya, pekerjaanya beralih menjadi tugas ekonometrika atau metode kuantitatif lain.
Bagaimana dengan analisis secara numerik untuk pasar dua jenis komoditi? Chiang (2005) memberikan contoh sebagaimana ditampilkan pada persamaan (7):
Sebelum menggunakan software MM, kita tata terlebih dahulu koefisien pada setiap persamaan (7). Penataan koefisien dilakukan dengan definisi parameter pada persamaan (6e) dan (6f). Nah, pada persamaa (7) kita memiliki definsi koefisien sebagai berikut :
Kemudian dari persamaan (6e) dan (6f), kita memiliki definisi parameter yang telah diringkas (reduced) sebagai berikut :
Jika koefisien persaman (7) diinsert ke dalam (6e) dan (6f) tersebut, maka diperoleh :
Kemudian kita insert kembali ke dalam struktur persaman (6e) dan (6f):
Selanjutnya, lakukan langkah sebagai berikut:
1. Pada software MM klik ‘equation solver’ dan pilih menu ‘solve a system of 2 equation’.
2. Copy persamaan (6e’) pada sheet ‘equation 1’, dan (6f’) pada ‘equation 2’, sehingga tampil sebagai berikut:
3. Klik perintah ‘solve’ pada pojok kanan bawah untuk menampilkan solusi besaran harga komoditi ‘1’ dan ‘2’ pada keseimbangan atau equilibrium pasar:
4. Berapa besarnya jumlah permintaan dan penawaran dua jenis komoditi tersebut? Untuk menjawabnya dengan MM, kita copy persamaan (7a) dan paste pada worksheet, kemudian kita replace manual variabel P1 dengan 3.71 dan variabel P1 dengan 6.57, sehingga diperoleh tampilan:
5. Klik ‘enter’, dan kita memperoleh jawaban bahwa permintaan untuk komoditi ‘1’ dalam keseimbangan pasar adalah 9.15:
6. Cara yang sama dapat diterapkan pada persamaan (7b), (7c), dan (7d) untuk memeroleh besaran penawaran komoditi ‘1”, permintaan komoditi ‘2’, dan penawaran komoditi ‘2’ dalam keseimbangan pasar:
7. Pada hasil terakhir tersebut, kita memeroleh informasi bahwa dalam keseimbangan pasar umum, yaitu gabungan pasar kedua komoditi, bahwa jumlah komoditi ‘1’ dan ‘2’ yang terserap di pasar sebanyak 9 unit dan 12 unit.
Epilog
Saya sangat meyakini bahwa proses pembelajaran yang ‘radikal’ akan memberikan kemampuan berpikir yang efektif dan efisien. ‘Radikal’ yang Saya maksud adalah memahami sesuatu hingga ke dasarnya. Setiap alasannya dipahami. Software MM membantu dalam proses pembelajaran demikian. Tidak seperti dahulu Saya belajar. Banyak menghabiskan kertas untuk ‘corat-coret’ dan ‘proofing’ suatu teori yang sedang dipelajari, sehingga waktu yang dialokasikan juga cukup lama, selain itu, ‘kertas coretan’ beresiko hilang, dan ketika hilang ‘pusing 7 keliling’ mencarinya.
Akhir kata, selamat memelajarinya. Mohon maaf jika penuturannya tidak menggunakan ‘bahasa akademis’ banget. Saya sedang belajar juga berkomunikasi tidak langsung melalui tulisan di era pandemic ini, agar sifatnya ada koneksi rasa dengan ‘temen-temen’ yang membacanya. Saya mengucapkan terimakasih kepada ‘temen-temen’ yang mencatat kesalahan pada tulisan ini, dan menuliskannya pada kolom komentar, sehingga Saya dapat mengoreksinya dengan segera.
Referensi
Chiang, A., & Wainwright, K. (2005). Fundamental Method of Mathematical Economics (4 ed.). New York: McGraw-Hill International Edition.
Henderson, J. M., & Quandt, R. E. (1958). Microeconomic Theory : a Mathematical Approach. (S. E. Harris, Ed.) New York: McGraw-Hill.
Mankiw, G. N. (2018). Principles of Microeconomics (Eighth ed.). Boston: Cengage Learning.
Tidak ada komentar:
Posting Komentar
Terimakasih